| (|
| :--- | :--- |

Pin Descriptions

Pin Name	Description
$\overline{O E}_{1}, \overline{O E}_{2}$	Bus Switch Enables
$1 A_{n}, 2 A_{n}$	Bus A
$1 \mathrm{~B}_{n}, 2 \mathrm{~B}_{\mathrm{n}}$	Bus B

Logic Diagram

Truth Table

Inputs		Inputs/Outputs	
$\overline{\mathbf{O E}}_{\mathbf{1}}$	$\overline{\mathbf{O E}}_{\mathbf{2}}$	$\mathbf{1 A}, \mathbf{1 B}$	$\mathbf{2 A}, \mathbf{2 B}$
L	L	$1 \mathrm{~A}=1 \mathrm{~B}$	$2 \mathrm{~A}=2 \mathrm{~B}$
L	H	$1 \mathrm{~A}=1 \mathrm{~B}$	Z
H	L	Z	$2 \mathrm{~A}=2 \mathrm{~B}$
H	H	Z	Z
H= HIGH Voltage Level			
$\mathrm{L}=$ LOW Voltage Level			
$\mathrm{Z}=$ High Impedance			

Absolute Maximum Ratings(Note 2)		Recommended Operating
Supply Voltage (V_{CC})	-0.5 V to +7.0 V	Conditions (Note 5)
DC Switch Voltage (V_{S}) (Note 3)	-0.5 V to +7.0 V	Power Supply Operating (V_{CC}) 4.5 V to 5.5 V
DC Input Voltage (V_{IN}) (Note 4)	-0.5 V to +7.0 V	Input Voltage ($\mathrm{V}_{\text {IN }}$) 0 V to 5.5 V
DC Input Diode Current ($\mathrm{I}_{1 /}$) $\mathrm{V}_{\text {IN }}<0 \mathrm{~V}$	$-50 \mathrm{~mA}$	Output Voltage ($\mathrm{V}_{\text {OUT }}$) 0 V to 5.5 V
DC Output Current (lout)	128 mA	Input Rise and Fall Time (t_{r}, t_{f})
DC $V_{C C} /$ GND Current ($\mathrm{I}_{\text {CC }} / \mathrm{I}_{\mathrm{GND}}$)	$\pm 100 \mathrm{~mA}$	Switch Control Input $0 \mathrm{~ns} / \mathrm{V}$ to $5 \mathrm{~ns} / \mathrm{V}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Switch I/O $0 \mathrm{~ns} / \mathrm{V}$ to DC
		Free Air Operating Temperature (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
		Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
		Note 3: V_{S} is the voltage observed/applied at either the A or B Ports across the switch.
		Note 4: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
		Note 5: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 6)	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	4.5-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.5-5.5			0.8	V	
V_{OH}	HIGH Level	4.5-5.5	See Figure 3			V	
I_{1}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{IN}} \leq 5.5 \mathrm{~V}$
		0			10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$
$\overline{\mathrm{I}} \mathrm{OZ}$	OFF-STATE Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 7)	4.5		4	7	Ω	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}, \mathrm{I}_{\text {IN }}=64 \mathrm{~mA}$
		4.5		4	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		35	50	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			1.5	mA	$\begin{aligned} & \mathrm{OE}_{1}=\mathrm{OE}_{2}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{OUT}}=0 \end{aligned}$
					10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{OE}_{1}=\mathrm{OE}_{2}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{I}_{\mathrm{OUT}}=0 \end{aligned}$
$\overline{\Delta I}^{\text {CC }}$	Increase in I Cc per Input	5.5			2.5	mA	One Input at 3.4 V Other Inputs at V_{CC} or GND

Note 7: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

Symbol	Parameter	$T_{A}=-$ $C_{L}=50 p$ $V_{C C}$ $M i n$	$\begin{aligned} & \hline 85^{\circ} \mathrm{C}, \\ & \mathrm{zD}=500 \Omega \\ & \hline 5.5 \mathrm{~V} \\ & \hline \text { Max } \end{aligned}$	Units	Conditions	Figure Number
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Propagation Delay Bus-to-Bus (Note 8)		0.25	ns	$\mathrm{V}_{1}=$ OPEN	$\begin{gathered} \hline \text { Figures } \\ 1,2 \end{gathered}$
$\mathrm{t}_{\text {PZH, }}, \mathrm{t}_{\text {PZL }}$	Output Enable Time	1.0	6.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	$\begin{gathered} \text { Figures } \\ 1,2 \end{gathered}$
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	1.0	7.0	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=\text { OPEN for } t_{\mathrm{PHZ}} \end{aligned}$	$\begin{gathered} \hline \text { Figures } \\ 1,2 \end{gathered}$

Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 9)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	3		pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}}=0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance "OFF State"	6		pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{OE}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathbb{I N}}=0 \mathrm{~V}$
Note 9: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{Mhz}$, Capacitance is characterized but not tested.					

AC Loading and Waveforms

Note: Input driven by 50Ω source terminated in 50Ω
Note: C_{L} includes load and stray capacitance
Note: Input PRR $=1.0 \mathrm{MHz}, \mathrm{t}_{\mathrm{W}}=500 \mathrm{~ns}$
FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

FIGURE 3.

Physical Dimensions inches (millimeters) unless otherwise noted

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384(FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
